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Seven Propionibacterium freudenreichii strains exhibited similar responses when placed at 4°C. They slowed down cell machin-
ery, displayed cold stress responses, and rerouted their carbon metabolism toward trehalose and glycogen synthesis, both accu-
mulated in cells. These results highlight the molecular basis of long-term survival of P. freudenreichii in the cold.

ropionibacterium freudenreichii is a bacterium of food and pro-

biotic interest, widely used as a ripening culture in the manu-
facture of Swiss cheese varieties (4, 16). It grows in cheese during
ripening at warm temperatures (20 to 24°C) but remains metabol-
ically active during the storage of cheese at low temperatures (10).
We previously investigated the adaptation strategies of P. freuden-
reichii type strain CIRM-BIA1" by -omic approaches under con-
ditions mimicking cheese ripening in the cold (6). Our previous
results suggest in particular that CIRM-BIA1" reroutes its metab-
olism toward glycogen synthesis. In the present study, we con-
firmed the actual accumulation of glycogen in cells and investi-
gated the response in the cold of six other P. freudenreichii strains.

Choice of strains and culture conditions. The transcriptomic
response of six P. freudenreichii subsp. shermanii strains (CIRM-
BIA9, CIRM-BIA118, CIRM-BIA122, and CIRM-BIA123 from
CIRM-BIA [Centre International de Ressources Microbiennes—
Bactéries d’Intérét Alimentaire, INRA, Rennes, France] and
CIRM-BIA472 and CIRM-BIA482 from Valio Ltd., Helsinki, Fin-
land) was studied during their transfer from 30°C to 4°C under
conditions mimicking cheese ripening, previously applied to
strain CIRM-BIA1" (6). All experiments were made in triplicate
independent cultures. The six strains were chosen with different
sequence types (7) and phenotypes. For example, they produce
methylbutanoate and ethyl propionate, two cheese aroma com-
pounds, at concentrations varying by factors of 6 and 12, respec-
tively, depending on the strain (data not shown).

Growth and metabolite production in the cold. All the strains
stopped their growth when placed at 4°C, whereas in the control
cultures maintained at 30°C, cells went on growing for about 20 h
(Fig. 1A). They went on producing propionate and acetate, the
two main products of lactate fermentation, but at a markedly
lower production rate in the cold (Fig. 1C and D) (3.4 = 0.6
[mean * standard deviation] mM per day at 4°C versus 76 * 15
mM per day at 30°C, i.e., a 23- = 6-fold decrease for propionate).
The rate of methylbutanoate production also decreased but at a
markedly lower extent (from 69 = 55 M per day at 30°C to 12 =
12 pM per day at 4°C, i.e., a mean fold decrease of 7 = 4) (Fig. 1B).

Transcriptomic approach applied to all strains. Gene expres-
sion after an 80-h period at 4°C (+ = 120 h) was compared to that
at 20 h during growth at 30°C for the 6 strains, using the method-
ology and microarrays previously described for strain CIRM-
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FIG 1 Time course of metabolic activity of seven P. freudenreichii strains over
a40-h incubation at 30°C followed by a further 80 h at 4°C. Growth (OD¢50m»
optical density at 650 nm) (A), concentrations of methylbutanoate (sum of
2-methylbutanoate and 3-methylbutanoate) (B), propionate (C), and acetate
(D). Error bars show the standard deviations of the results of triplicate inde-
pendent experiments. The inset in panel A shows the growth curves at 4°C and
30°C. Values are means for the 7 strains: CIRM-BIA1T (X), CIRM-BIA9 (A),
CIRM-BIA118 ([J), CIRM-BIA122 (A), CIRM-BIA123 (O), CIRM-BIA472
(@), CIRM-BIA482 (H).

BIA1" (6) (NCBI GEO, http://www.ncbi.nlm.nih.gov/geo/, plat-
form accession number GPL13959). The transcriptomic data for
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FIG 2 Number of differentially expressed genes (Ifold changel > 1) after 80 h at 4°C in comparison with gene expression at the reference time of 20 h for seven
P. freudenreichii strains (CIRM-BIA118, -122, -123, -1, -472, -482, and -9). Downregulated (white bars) or upregulated (black bars) genes with known functions
are presented according to their metabolic category: E, energy metabolism; P, protein synthesis; T, transport of peptides and inorganic ions; AA, transport and
metabolism of amino acids; CH, transport and metabolism of carbohydrates; A, adaptation to atypical conditions.

CIRM-BIA1" at sampling times 20 h and 3 days (accession num-
ber GSE30841) were added to the new data set (six strains, acces-
sion number GSE34227) to facilitate the comparison between the
present and previous results. Microarray data were normalized
and analyzed as previously described (6). An analysis of variance
(ANOVA) was performed to evaluate the effects of time, strain,
and their interactions on expression. Raw P values were adjusted
for multiple comparisons by the Benjamini-Hochberg procedure.
Since the microarray used was designed from the genome of strain
CIRM-BIA1", we first checked the quality of hybridization with
DNA of all the strains used, to avoid any bias in the interpretation
of results due to possible mismatches between the oligonucleo-
tides and the DNA sequence of the 6 other strains. DNA was ex-
tracted from pure cultures as previously described (10). A signal
intensity of >8 (expressed as log,) was obtained for all oligonu-
cleotides using DNA from CIRM-BIA1", whereas a low signal
intensity (<6) was observed using DNA from the other strains for
a small number of oligonucleotides. Therefore, we discarded
from the data set the 281 genes for which 50% or more of the
oligonucleotides targeting a gene showed a signal intensity of
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<6 for at least one strain. This resulted in a final data set con-
sisting of 88% of the 2,300 genes targeted in the microarray.
Significant (P < 0.01) changes in expression exceeding 2 X (i.e.,
|fold change (log,)| > 1) for at least one strain were considered
differentially expressed (DE), resulting in 1,079 DE genes.

A similar transcriptomic response for all strains. Like CIRM-
BIA1" (6), the 6 strains downregulated most of the DE genes re-
lated to the general cell machinery, such as genes involved in en-
ergy production and protein synthesis, whereas both down- and
upregulated genes were observed in some gene categories, like
transport and metabolism of amino acids and carbohydrates (Fig.
2). The main features are briefly described below.

General slowdown of cell machinery and cold stress re-
sponse. All strains slowed their metabolism, as indicated, for ex-
ample, by the downregulation of ftsX, involved in cell division
(fold changes ranging from —1.7 to —4.3) (Table 1), and of most
of the genes involved in energetic metabolism (Table 1). Genes
involved in the conversion of pyruvate into propionate (sdhABC
and pceB) and into CO, and acetate (aceE and Ipd) were also
downregulated at 4°C (Table 1). Many bacteria exhibit a general

Applied and Environmental Microbiology


http://www.ncbi.nlm.nih.gov/nuccore?term=GSE30841
http://www.ncbi.nlm.nih.gov/nuccore?term=GSE34227
http://aem.asm.org

P. freudenreichii Metabolism in the Cold

TABLE 1 Differentially expressed genes involved in general cell machinery slowdown

Pvalue Fold change (log,) for CIRM-BIA strain®:
Time X

Name Locus tag” Description Category” Time Strain strain 118 122 123 1 472 482 9
cstA PFREUD_16500 Carbon starvation protein A <0.01 <0.01 <0.01 —-1.0 -1.2 —34 —-1.5 —=2.0 —3.7 =29
ftsX PFREUD_09600 Cell division protein CD <0.01 <0.01 <0.01 -2.1 -1.7 —-24 —4.7 -1.7 —3.8 —4.3
icd PFREUD_06870 Putative isocitrate/isopropylmalate CH <0.01 <0.01 0.05 -1.0 -3.3 -=2.0 -3.0 —3.4 -3.3 -3.0

dehydrogenase
pccB PFREUD_07170 Propionyl-coenzyme A carboxylase beta CH <0.01 0.01 <0.01 -1.2 -1.6 —0.4 -1.8 -1.8 -1.5 -1.2

chain
aceE PFREUD_09470 Pyruvate dehydrogenase E1 component CH <0.01 <0.01 0.14 -1.5 -1.9 -1.5 -1.9 —-2.8 =21 -1.9
Ipd PFREUD_10890 Dihydrolipoyl dehydrogenase CH <0.01 0.28 0.44 —0.5 —0.9 —0.7 -1.5 —-2.2 —0.8 -1.1
acn PFREUD_12590 Aconitase CH <0.01 <0.01 0.47 —-0.7 —0.8 —-1.0 —-1.0 —-1.5 —0.8 —-1.0
cydA PFREUD_01720 Cytochrome d ubiquinol oxidase, E <0.01 <0.01 0.02 —0.8 -1.4 -1.6 -1.6 -15 -2.0 —34

subunit I
cydB PFREUD_01730 Cytochrome d ubiquinol oxidase, E <0.01 <0.01 0.03 —-1.0 -1.3 -1.3 -1.1 —-0.7 —-0.9 —2.2

subunit II
nuoA PFREUD_05160 NADH-quinone oxidoreductase chain A E <0.01 <0.01 0.02 —1.4 -1.2 —0.5 -2.0 -1.3 —2.2 -2.0
nuoB PFREUD_05170 NADH-quinone oxidoreductase chain B E <0.01 <0.01 <0.01 -19 -1.8 -1.0 -2.3 -1.4 -33 -2.3
nuoC PFREUD_05180 NADH-quinone oxidoreductase chain C E <0.01 <0.01 <0.01 -1.9 -1.7 -1.3 —3.8 -2.3 -3.7 —3.4
nuoD PFREUD_05190 NADH-quinone oxidoreductase chain D E <0.01 <0.01 <0.01 -2.0 -19 -1.6 -3.8 -2.7 —-4.9 —5.2
nuoE PFREUD_05200 NADH-quinone oxidoreductase chain E E <0.01 <0.01 <0.01 -2.0 -1.9 -1.9 -2.9 —2.5 —4.0 -3.3
nuoF PFREUD_05210 NADH-quinone oxidoreductase chain F E <0.01 <0.01 0.08 -2.2 -2.0 -19 -2.7 —-24 —34 -29
nuoG PFREUD_05220 NADH-quinone oxidoreductase chain G E <0.01 <0.01 0.08 -2.0 -1.5 -1.9 -1.9 —-2.2 —-2.8 -3.1
nuoH PFREUD_05230 NADH-quinone oxidoreductase chain H E <0.01 <0.01 0.01 -1.8 -1.0 -1.6 -0.9 -1.6 —-24 -1.7
nuol PFREUD_05240 NADH-quinone oxidoreductase chain I E <0.01 <0.01 0.09 —2.5 -1.0 -1.6 —-1.4 —-2.3 -3.0 -2.9
nuoJ PFREUD_05250 NADH-quinone oxidoreductase chain J E <0.01 <0.01 0.02 -2.1 -1.1 -1.7 -1.5 -2.0 —-3.3 -2.1
nuoK PFREUD_05260 NADH dehydrogenase I chain K E <0.01 <0.01 0.01 —-23 -1.2 -1.5 —2.2 =21 —-3.4 -2.6
nuoL PFREUD_05270 NADH dehydrogenase E <0.01 <0.01 0.01 =25 -1.5 -2.1 -19 -2.5 —3.7 -2.9
nuoM PFREUD_05280 NADH dehydrogenase I chain M E <0.01 <0.01 0.01 —-23 -1.1 -1.7 -1.3 —2.4 -3.2 -2.9
nuoN PFREUD_05290 NADH dehydrogenase I chain N E <0.01 <0.01 0.05 -2.8 -1.6 =21 -1.2 -2.3 -2.8 -2.3
sdhC1 PFREUD_09240 Succinate dehydrogenase, subunit C E <0.01 <0.01 <0.01 -1.3 —0.8 1.2 =21 —-2.2 =21 —-2.2
sdhA PFREUD_09250 Succinate dehydrogenase, subunit A E <0.01 <0.01 <0.01 =21 -1.2 0.5 -2.7 -29 —3.2 —34
sdhB PFREUD_09260 Succinate dehydrogenase, subunit B E <0.01 <0.01 0.09 -1.2 —0.9 0.3 -0.9 -1.0 —0.7 -1.1
atpB PFREUD_10430 ATP synthase A chain E <0.01 <0.01 0.03 -2.0 —-1.6 -1.5 —-2.8 —-2.6 —-33 —-2.5
atpE PFREUD_10440 ATP synthase C chain E <0.01 <0.01 0.22 —-2.8 —-2.7 -1.9 —-3.1 —3.1 —-2.8 —3.2
atpF PFREUD_10450 ATP synthase B chain E <0.01 <0.01 0.30 -29 =3.0 —-2.1 —-23 —-2.7 —-2.7 —-2.6
atpH PFREUD_10460 ATP synthase delta chain E <0.01 0.25 0.06 —-2.8 —-2.8 —2.4 —3.4 —-3.5 -3.0 —3.6
atpA PFREUD_10470 ATP synthase subunit alpha E <0.01 0.34 0.21 -3.0 -2.6 =25 -3.6 -3.6 —3.7 -3.5
atpG PFREUD_10480 ATP synthase gamma chain E <0.01 <0.01 0.20 -3.1 —-2.6 —2.4 -3.7 —4.2 -39 -3.5
atpD PFREUD_10490 ATP synthase subunit beta E <0.01 0.05 0.38 -29 -23 —-2.2 =3.0 —-3.2 —3.1 —-3.2
atpC PFREUD_10500 ATP synthase epsilon chain E <0.01 0.12 0.23 -3.8 -2.5 —2.4 -3.0 —-3.6 —-3.2 —3.8
sdhB3 PFREUD_14300 Succinate dehydrogenase E <0.01 <0.01 0.02 -2.8 -2.6 —0.6 —-24 —-24 -2.7 —4.2
sdhA3 PFREUD_14310 Succinate dehydrogenase flavoprotein E <0.01 <0.01 <0.01 —2.5 =25 —0.3 -3.0 —-2.2 —2.6 —4.3

subunit
sdhC2 PFREUD_14320 Succinate dehydrogenase cytochrome E <0.01 <0.01 <0.01 —2.4 —-2.2 0.3 —-23 -1.5 —-2.3 —-2.8

B-558 subunit

“ Locus tag for CIRM-BIA1™.

bA, adaptation to atypical conditions; CD, cell division; CH, transport and metabolism of carbohydrates; E, energy metabolism.

¢ Values of |fold change (log,)| >1 are in boldface.
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TABLE 3 Genes encoding esterases and branched-chain amino acid-converting enzymes

P value Fold change (log,) for each CIRM-BIA strain®:
Type of enzyme and Time X
name Locus tag” Description” Category® Time Strain strain 118 122 123 1 472 482 9
Esterases
pf1861 PFREUD_03560 Putative carboxylic ester hydrolase L 0.18 <0.01 0.06 —0.2 —0.6 —0.4 0.2 0.4 0.2 —0.6
pf774 PFREUD_04240 Putative carboxylic ester hydrolase L 0.60 <0.01 0.11 0.4 —0.7 —0.4 0.3 0.2 —0.3 0.6
279 PFREUD_04340 Carboxylic ester hydrolase L 0.32 0.01 0.11 0.3 —0.6 —0.6 0.6 0 0.1 0.4
pfo62 PFREUD_04810 Carboxylic ester hydrolase L <0.01 0.05 0.61 0.5 0.4 0.5 0.7 0.2 0.5 0.2
pf1509 PFREUD_10540 Putative carboxylic ester hydrolase L 0.50 <0.01 0.03 0.0 0.5 0.2 0.3 —0.7 0.9 —0.5
pf1758-2887 PFREUD_10790- Putative carboxylic ester L 0.57 0.02 0.34 —0.3 —0.2 —0.3 — 0.2 0.5 —
PFREUD_10800 hydrolases®
pfl1637 PFREUD_12910 Putative carboxylic ester hydrolase L <0.01 <0.01 0.07 0.0 —0.4 0.3 0.0 —0.8 —0.3 —0.4
pf379 PFREUD_13000 Putative carboxylic ester hydrolase L <0.01 <0.01 <0.01 0.8 0.7 0.6 1.2 0.6 1.6 0.6
pf169 PFREUD_14330 Carboxylic ester hydrolase L 0.13 0.19 0.13 —0.1 —0.2 —0.1 0.3 0.1 0.5 0.1
pf1655 PFREUD_18110 Carboxylic ester hydrolase L 0.59 <0.01 0.55 0.3 0.7 —0.4 —0.1 0 0 —0.3
pf667 PFREUD_23150 Carboxylic ester hydrolase L <001 <001  <0.01 0.1 —0.1 02 0.9 0.3 0.5 —0.2
p2042 PFREUD_23770 Putative carboxylic ester hydrolase L <0.01 <0.01 0.04 —0.3 —0.6 —0.6 -0.2 0.1 —0.6 —0.4
Branched-chain amino
acid transport
and conversion
livG PFREUD_10850 ABC protein of branched-chain AA <0.01 <0.01 0.02 —-1.4 —-0.8 -2.3 -3.6 —2.4 -3 —-2.1
amino acid ABC transporter
braE PFREUD_10860 IM protein of branched-chain AA <0.01 <0.01 <0.01 —-0.5 —-0.3 —-0.8 -1.5 -1.1 -1.5 -0.6
amino acid ABC transporter
braD PFREUD_10870 IM protein of branched-chain AA <0.01 <0.01 <0.01 -1.0 —0.4 -1.3 -1.9 -1 —24 -0.9
amino acid ABC transporter
braC PFREUD_10880 BP of branched-chain amino acid AA <0.01 <0.01 0.01 -1.0 —0.5 -1.2 —-2.9 -1.6 -2.2 —-0.6
ABC transporter
ydaO PFREUD_12690 IM protein of branched-chain AA <0.01 <0.01 0.06 =21 -2 -1.6 —2.4 -1.9 —2.4 —-2.2
amino acid ABC transporter
ilvE PFREUD_13350 Branched-chain amino acid AA 0.45 0.01 0.10 —-0.2 0.2 —0.4 0.3 —-1.5 0.4 0.4
aminotransferase
bkdA2 PFREUD_02200 2-Oxoisovalerate dehydrogenase AA <0.01 <0.01 0.03 -2.1 -3.7 -2.0 -3.3 -3.3 -35 -39
subunit beta
bkdB PFREUD_02210 Dihydrolipoyllysine residue (2- AA <0.01 <0.01 0.03 —0.8 -17 —-0.7 -1.8 -1.4 —-0.7 -1.5

methylpropanoyl) transferase

“Locus tag for CIRM-BIA1™.

¥ IM, integral membrane; BP, binding protein.
L, lipid metabolism; AA, transport and metabolism of amino acids.
@ Values of |fold change (log,)| >1 are in boldface.
¢ This gene presents a frameshift in strains CIRM-BIA1" and CIRM-BIA9.
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FIG 3 Main routes of pyruvate formation and conversion in P. freudenreichii
during storage at 4°C and relevant for this study. Genes upregulated at 4°C are
shown in black, and downregulated genes in gray. Thick black arrows empha-
size the metabolic pathways that are favored at 4°C, and thin gray arrows the
pathways that are downregulated at 4°C. ace, pyruvate dehydrogenase, E1
component; ald, alanine dehydrogenase; Idh, 1-lactate dehydrogenase; ppdk,
pyruvate phosphate dikinase; sdaA, L-serine dehydratase; sdh, succinate dehy-
drogenase; CoA, coenzyme A. Values of fold changes are shown in Table 1,
Table 4, and Fig. 5.

slowdown in the cold; for example, Lactococcus lactis in model
cheeses when placed at 12°C (5). The 6 strains exhibited cold stress
responses similar to those of CIRM-BIA1" (6) and other bacteria
(2, 15). For example, the genes cspA and cspB, encoding cold shock
proteins, were upregulated, as well as DEAD box RNA helicases,
which facilitate translation and, thus, protein synthesis in the cold
(Table 2). In contrast, several chaperone- and heat shock protein-

coding genes (groSL and dnaKJ operons and hsp20, clpB2, and
grpE) were downregulated at 4°C for most strains (Table 2).

Production of aroma compounds in the cold. P. freudenreichii
contributes to the development of Swiss cheese flavor via different
pathways involving esterases and branched-chain amino acid-
converting enzymes (16). The 12 esterase-encoding genes identi-
fied in the P. freudenreichii genome (8), in particular pf279, encod-
ing a lipolytic secreted esterase probably involved in lipolysis (9),
kept the same level of expression at 4°C in the 6 strains tested, as
previously observed for CIRM-BIA1T (Table 3). These results are
in agreement with the observation that P. freudenreichii still con-
tributes to the formation of free fatty acids in cheese at low tem-
peratures (16). Most genes encoding branched-chain amino acid
transporters and converting enzymes were downregulated (for ex-
ample, fold changes ranging from —2.0 to —3.9 for bkdA2) (Table
3), whereas methylbutanoate was still produced at 4°C (Fig. 1B). It
suggests that this pathway is posttranscriptionally regulated
and/or that branched-chain amino acid-converting enzymes were
accumulated in cells and remained active at 4°C.

Rerouting of carbon metabolism toward glycogen synthesis.
The phosphoenolpyruvate-pyruvate-oxaloacetate node intercon-
nects the major pathways of carbon metabolism in bacteria (13).
The main changes in the expression of pyruvate-related genes in P.
freudenreichii in the cold are shown in Fig. 3. Three genes involved
in generating pyruvate from alanine, serine, and lactate were up-
regulated, as previously observed in CIRM-BIA1" (6), as well as
genes involved in gluconeogenesis (ppdK, enol, eno2, fba2, and
pgi) (Table 4). PpdK is a pyrophosphate-dependent enzyme, and
accordingly, an inorganic pyrophosphatase-coding gene was
found to be overexpressed in the cold in all strains (ppa) (Table 4).
Genes coding for enzymes of glycogen synthesis by the classical
pgmA-glgC-glgA pathway were overexpressed (Fig. 4). Moreover,

TABLE 4 Differentially expressed genes involved in pyruvate generation and rerouting toward trehalose and glycogen synthesis

P value Fold change (log,) for each CIRM-BIA strain‘:
Function and Time X
name Locus tag” Description Category’ Time Strain strain 118 122 123 1 472 482 9
Generation of
energy
ppa PFREUD_23500 Inorganic pyrophosphatase  Ph <0.01 <0.01 <0.01 2.5 1.8 1.7 3.3 2.7 28 2.5
Generation of
pyruvate
ald PFREUD_00370 Alanine dehydrogenase AA <0.01 <0.01 <0.01 37 45 1.1 75 32 20 43
sdaA PFREUD_18570 L-Serine dehydratase AA <0.01 <0.01 <0.01 1.6 1.3 0.5 2.0 1.0 1.9 0.9
ldh2 PFREUD_12840 L-Lactate dehydrogenase CH <0.01 0.02 0.01 1.5 20 13 13 1.7 18 04
Gluconeogenesis
ppdk PFREUD_03230 Pyruvate phosphate dikinase CH <0.01 <0.01 <0.01 13 1.2 —06 1.9 09 03 06
enol PFREUD_17320 Enolase 1 CH <0.01 <0.01 0.01 1.1 1 0.6 2.6 1.9 1.7 1.1
eno2 PFREUD_17250 Enolase 2 CH <0.01 <0.01 0.02 1.2 1.2 0.7 0.6 1.3 1.1 0.7
fbal PFREUD_19150 Fructose-bisphosphate CH <0.01 <0.01 0.33 -05 -12 —-03 -1.0 —-07 —-06 -—1.0
aldolase class IT
fba2 PFREUD_23890 Fructose-bisphosphate CH <0.01 <0.01 <0.01 2.5 2.4 0.5 3.9 2.3 1.2 2.2
aldolase class I
pgi PFREUD_04290 Glucose-6-phosphate CH <0.01 <0.01 <0.01 10 04 05 16 08 12 15
isomerase

“ Locus tag in CIRM-BIA1™.

b Ph, metabolism of phosphate; AA, transport and metabolism of amino acids; CH, transport and metabolism of carbohydrates.

¢ Values of [fold change (log,)| >1 are in boldface.
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FIG 4 Changes in expression of genes involved in trehalose and glycogen synthesis in P. freudenreichii (pathways adapted from Chandra et al. [3]). Each box
shows the fold change, expressed as log,, for each gene in all seven strains (CIRM-BIA118, -122,-123, -1, -472, -482, and -9) after 80 h at 4°C in comparison with
gene expression at the reference time (20 h). Values of Ifold change (log,)!| >1 and <—1 are shown in dark and light gray, respectively.
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we showed that glgE, encoding a maltosyltransferase, present in
the newly described treS-pep2-glgE pathway of glycan synthesis
from trehalose in mycobacteria (3), was also upregulated in all of
the strains (fold changes ranging from 0.9 to 1.4) (Fig. 4). To
confirm that glycogen was effectively synthesized by P. freuden-
reichii, it was quantified in cells over the incubation time (incuba-
tion at 4°C extended for 250 h), along with trehalose, since the
syntheses of these two compounds are interconnected (3). Both
compounds were analyzed in CIRM-BIA1" cells by enzymatic
methods as previously described (12). Our results showed that the
concentrations of glycogen and trehalose increased by factors of 3
and 18, respectively, between the end of growth at 30°C (40 h) and
120 h of incubation at 4°C (Fig. 5). The present study provides the
first quantification of glycogen accumulation in propionibacteria,
confirms the results of an in vivo '>C nuclear magnetic resonance
(NMR) study showing the ability of the same strain to synthesize
glycogen (11), and shows that low temperature and not only nu-
trient starvation can induce the synthesis of glycogen in bacteria.
The synthesis of trehalose by propionibacteria was early reported
(14), with O,, NaCl, and pH stresses known to induce its synthesis
in propionibacteria (1).

Conclusions. This study shows that adaptation strategies in
the cold described for the type strain are general within P. freuden-
reichii species and gives clues on the molecular basis of the long-
term survival and activity of this bacterium during prolonged in-
cubation at low temperatures.
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